Закрыть фоторежим
Закрыть фоторежим
Ваш регион:
^
Все новости
Новости Поиск Темы
ОК
Применить фильтр
Вы можете фильтровать ленту,
выбирая только интересные
вам разделы.
Идёт загрузка

Интервью

Данный контент доступен для просмотра на персональных компьютерах и планшетах

Перейти на главную страницу

Новый "компьютер бесконечности" имеет потенциал применения в промышленности - математик Ярослав СЕРГЕЕВ

7 ноября 2012, 16:40 UTC+3
Поделиться
Фото ИТАР-ТАСС

Фото ИТАР-ТАСС

Российский математик Ярослав Сергеев, профессор Нижегородского государственного университета им. Н.И. Лобачевского, профессор Калабрийского университета /Италия/, разработал и запатентовал методику, впервые позволившую компьютерам проводить операции с бесконечно большими или малыми числами, и создал прототип подобного компьютера.

 

- В последнее время в различных областях науки много новых прорывов. Ожидаете ли вы в ближайшее время каких-либо сенсаций в математике?

Математика - это область знаний, в которой прорывы широкой публике не всегда видны. Можно вспомнить широко озвученные прессой доказательства великой теоремы Ферма Эндрю Уайльсом и работы Перельмана, которые потрясли общественность /во многом благодаря эксцентричному поведению последнего/. Однако и на далеких от широкой публики направлениях идет серьезная работа.

Если говорить о том, каких новых прорывов стоит ждать, то направление, которое близко для меня - это разработка новых типов вычислительных устройств и появление квантового компьютера, идея которого была впервые предложена нобелевским лауреатом Ричардом Фейнманом еще в 1982 г. Если он будет построен, то позволит решать задачи пока нам недоступные. Типичный пример - задача коммивояжера. Когда есть большое количество городов и нужно найти путь коммивояжера, который, выйдя из начального города, должен будет в него вернуться, пройдя через все города только один раз, и при этом самым коротким путем. Сейчас эти задачи решать точно не возможно. Их решают только приближенно, хотя уже делают это с огромным количеством городов. Найти точного решения мы пока не можем, потому что с экспоненциальным ростом сложности пока не справляемся.

Кроме того, доказано, что на квантовом компьютере будут решаться задачи шифрования, которые в настоящий момент не решаются. Есть в этой связи конечно и угрозы - придется переделывать всю систему шифрования и криптографии.

- Известность за пределами научных кругов Вы приобрели как изобретатель математических методов, позволяющих работать с бесконечно большими и бесконечно малыми числами, и созданного на их основе "компьютера бесконечности". Имеют ли Ваши изобретения практическое применение или они пока относятся к области фундаментальной науки?

Предложенный мною подход и математические методы существенно расширяют наши вычислительные возможности. Есть такое высказывание британского математика Альфреда Норта Уайтхеда: "Человечество идет вперед, расширяя число важных операций, которые мы можем делать, не думая о них". Благодаря "компьютеру бесконечности" человечество может работать с разными бесконечно большими и бесконечно малыми числами, не думая о них как о некоторой специальной сложной ситуации, а как с обычными конечными величинами.

Новый язык можно использовать как для моделирования объектов, так и создания численных методов нового типа, которые позволяют считать то, что раньше не считалось. Я подчеркиваю, что речь идет не о символьных вычислениях, а о работе с числами. Раньше в нашем языке не было возможности работать с разными бесконечно большими и бесконечно малыми величинами. Сейчас это стало возможно. Мы можем перейти от качественного обозначения бесконечности к количественному.

Для меня является важным найти применение этому аппарату в научных вычислениях, которые, в свою очередь, позволят людям, работающим в конкретных областях, использовать их на практике. Уже сейчас новая методика вычислений используется учеными в России, Италии, Франции, США и других странах. Мы можем решать задачи линейного программирования, глобальной и локальной оптимизации - совершенно новыми способами. Мы также можем применять математику, использующую бесконечно малые величины, для решения дифференциальных уравнений. Благодаря новому, более богатому понятию числа, мы можем предложить методы, которых раньше не было.

Есть очень интересные результаты в теории протекания - перколяции - теории, описывающей возникновение бесконечных кластеров, состоящих из отдельных элементов. Изначально эта теория выросла из попыток описать процесс того, как вода проходит через кофе-машину. Потом начала применяться в полупроводниках . Эти методы можно использовать и при описании процессов прохождения воды через почву - уже есть статьи на эту тему.

- Будет ли Ваш "компьютер бесконечности" производится промышленно?

Будет, но нужно время. Я создал методику и работающий программный прототип, а это, по сути, обычный компьютер, который программным способом эмулирует "компьютер бесконечности". Но на самом деле сделать его "в железе" очень просто - это одно из его больших достоинств с точки зрения практической реализации. Здесь можно провести параллель с числами с плавающей запятой. Раньше компьютеры для работы с такими числами тоже использовали эмуляцию, потом появился специальный сопроцессор, а сейчас это решение уже встроено в "ядре" любого процессора. С компьютером бесконечности можно выбрать любое из этих решений, либо все сразу, поскольку разным пользователям могут бы интересны разные варианты реализации.

Интерес в промышленности к "компьютеру бесконечности" уже появился и будет только расти. Он может применяться везде, где используются вычисления высокой точности. Сейчас это практически все высокотехнологичные отрасли промышленности. Он позволит не только уточнить старые математические модели, но и создать новые, которые мы сейчас еще даже не представляем. Для того, чтобы это произошло, нужно, чтобы люди из каждой конкретной отрасли научились использовать эту математику и этот новый вычислительный прибор. Если вы не знаете, как это работает, вы не можете применять это на практике. Проведем аналогию: проблема заключается не только в том, чтобы сделать логарифмические линейки, но и в том, чтобы научить людей на них считать. Она и является ключевой.

В последние годы мы с коллегами активно занимаемся поиском приложений для моей теории: мы уже говорили о перколяции, оптимизации, дифференциальных уравнениях; можно вспомнить также о решении систем линейных уравнений, математическом анализе, гиперболической геометрии, клеточных автоматах и т.д. Мы ищем области чистой и прикладной математики, где новая методология вычислений полезна и где она может дать серьезный эффект. С другой стороны я занимаюсь уточнением оснований новой математики и много выступаю с лекциями по всему миру. Это очень полезно, потому что люди задают вопросы, и ты понимаешь, что им не понятно, стараешься улучшить презентацию методологии, ответить им более доступно. Приходится делать одновременно много вещей в разных направлениях.

- Мы можем ожидать, что "компьютер бесконечности" будет производится кем-нибудь из глобальных игроков IT-рынка?

Что касается реализации проекта "компьютера бесконечности", то интерес к этому есть, в том числе и со стороны глобальных корпораций. Мне регулярно делают различные предложения, я постоянно веду переговоры, но мы пока не договариваемся. Здесь есть несколько моментов: все понимают, что потенциальный рынок очень большой. Но пока все предложения заключаются в том, чтобы выкупить патент "на будущее" либо, чтобы купить его для какого-то узкого применения. Я же все-таки хочу воплотить компьютер бесконечности "в железе". Однако, хорошо известно, что ведущие корпорации обладают определенной инертностью - они уже вложили миллиарды долларов в собственные научные разработки, а для топ-менеджеров, отвечающих за эту работу, отказаться от какого-то приоритетного проекта, куда "вбухали" громадные средства, ради идеи "со стороны" - все равно что расписаться в собственной некомпетентности. Поэтому им проще не доводить новые идеи извне до руководства своих компаний. Эта ситуация хорошо известна и описана во всех учебниках по трансферу технологий, когда личные интересы конкретного менеджера играют против интересов компании. Так что необходимо просто работать и продолжать показывать преимущества новой вычислительной технологии как можно более широкому числу людей.

- Сейчас огромную роль в развитии промышленности играют суперкомпьютеры. Могут ли предложенные Вами методы использоваться в этой сфере?

Компьютер бесконечности можно считать одним из видов суперкомпьютеров, если посмотреть на него с той точки зрения, что он может делать вещи, которые не может делать обычный компьютер, то есть вычислять с очень высокой точностью, благодаря использованию бесконечно малых величин. Потому что мы можем вычислять на нашем компьютере с бесконечно большой точностью. Если у вас летит ракета, и вы можете отслеживать ее с бесконечно большой точностью, то она попадет в квадрат размером, условно говоря, не сто на сто, а один на один.

Сейчас конкуренция в сфере разработки суперкомпьютеров, по сути, представляет из себя гонку увеличения числа процессоров для ускорения параллельных вычислений. Но нельзя все время развиваться экстенсивно. Уже сейчас выделяемое элементной базой суперкомпьютеров тепло часто не позволяет двигаться дальше, минитюаризация почти достигла своего предела. С другой стороны, совершенно естественный ход истории - когда одна технология доходит до своего предела, то неожиданно находится выход в совершенно другом направлении. Это может быть одним из решений для суперкомпьютеров - не просто ускоряться, а еще и уточняться.

Раньше мы все время учили, что бесконечность минус бесконечность - это неопределенная форма. Соответственно, все автоматические вычисления, когда доходят до неопределенных форм, останавливаются. В предложенной мною математике нет неопределенных форм /в этом она близка известному так называемому нестандартному анализу/. Вы можете вычислять дальше. Та стена, о которую мы раньше стукались, исчезла. Можно идти дальше - и что там будет, совершенно непонятно. В этой связи можно привести пример римлян, у которых не было ни нуля, ни отрицательных чисел, поэтому они не могли написать ни одной теоремы ни про ноль, ни про отрицательные числа. На такой математике нельзя было построить компьютер, так как для этого нужна позиционная система записи – бинарная или троичная. Сейчас у нас есть новая математика, которая открывает перед нами совершенно новые горизонты.

- А возможно ли создать Ваш уникальный компьютер в России или для этого отсутствуют соответствующие технологии?

В России это можно сделать также как и в любой другой стране. И никаких проблем в элементной базе или отсутствии технологий здесь нет. Кроме того, для страны это возможность получения серьезного стратегического преимущества: делать компьютеры, которые никто другой делать не может и которые, к тому же, имеют полную патентную защиту в ряде ведущих государств мира. Но нужно серьезное финансирование. Ведь дело не только в том, чтобы создать принципиально новый компьютер, нужны серьезные инвестиции в его, как любят говорить на Западе, "евангелизацию". Моя методология уже хорошо известна в кругах специалистов-теоретиков. Но теперь надо рассказывать более широким научным кругам о возможностях этого подхода и дать им попробовать его использовать. Мне бы очень хотелось, чтобы мое изобретение было реализовано и использовалось и в России тоже.

 

Артем Чуркин
(ИТАР-ТАСС, Шанхай)

 

Архив эксклюзивных интервью в базе данных ИНФО-ТАСС по подписке

Поделиться