30 июня 2018, 15:34

Эксперты: конкуренция в области разработки гиперзвукового оружия возрастает

Гиперзвуковой стратегический ракетный комплекс "Авангард". Минобороны РФ
Гиперзвуковой стратегический ракетный комплекс "Авангард"
Россия реализует амбициозную программу разработки гиперзвукового оружия, которая пользуется решительной поддержкой правительства, отметили аналитики Jane’s

МОСКВА, 30 июня. /ТАСС/. Вооруженные силы разных стран разрабатывают гиперзвуковые средства наземного базирования в ответ на быстро возникающие угрозы и совершенствование современных систем противоракетной обороны (ПРО). Эксперты информационно-аналитического агентства Jane’s исследовали программы в области гиперзвука, реализуемые в США, России, Китае и Индии.

Научно-исследовательские и опытно-конструкторские работы (НИОКР) в области гиперзвуковых технологий привели к созданию высокоскоростного оружия, подчеркивают они, которое на сегодняшний день считается ключевым для армий мира, намеренных сохранять свою боеспособность на дельнейшую перспективу.

В течение последних десятилетий работы в области гиперзвуковых технологий проводились циклами, в рамках которых каждые предшествующие исследования выполнялись для получения усовершенствованных результатов последующих работ. Такая методика обеспечила эпохальные достижения в области гиперзвукового оружия. В течение примерно двух десятилетий специалисты работают в основном над применением гиперзвуковых технологий в сфере баллистических ракет (БР), планирующих ГЧ с ракетным двигателем и крылатых ракет.

В ходе этих разработок особое внимание уделяется моделированию, испытаниям в аэродинамических трубах (АДТ), конструкции носового обтекателя, "умным" материалам, динамике полета при входе в атмосферу, программному обеспечению (ПО).

В результате проделанной огромной работы созданные гиперзвуковые аппараты наземного базирования демонстрируют высокие показатели готовности и надежности, а также высокую степень точности, что позволяет военным атаковать большой ряд целей. Кроме того, они могут существенно ослабить имеющиеся не сегодняшний день системы противоракетной обороны (ПРО).

Программы США

Министерство обороны и другие правительственные учреждения США уделяют повышенное внимание к разработке гиперзвукового оружия, которое, как ожидается, станет доступным в США в 2020-х годах. Такие разработки поддерживаются растущими инвестициями в обеспечение гиперзвуковых исследований Пентагона.

В настоящее время командование космической и противоракетной обороны СВ США SMDC (Space and Missile Defense Command) совместно с Сандийской национальной лабораторией (Sandia National Laboratory, SNL) реализуют программу создания перспективного гиперзвукового оружия AHW (Advanced Hypersonic Weapon), известного также под вторым названием "Альтернативная система для полетов со входом в атмосферу" (Alternate Re-Entry System, ARES). Гиперзвуковой планирующий аппарат (ГПА) в составе этой системы применяется для доставки к цели обычной боевой части, аналогичной по своей концепции аппарату HTV-2 (Hypersonic Technology Vehicle-2), который совместно разрабатывается Агентством перспективных исследований министерства обороны США DARPA (Defense Advanced Research Projects Agency) и ВВС США. В то же время ГПА может быть интегрирован на разгонный блок меньшей дальности, чем HTV-2, что предусматривает его развертывание на передовой линии - на суше или на море. Он также имеет отличную от HTV-2 конструкцию - коническую, а не клиновидную - и оснащен системой высокоточного наведения для нанесения удара на конечном участке.

Гиперзвуковое оружие AHW разрабатывается в качестве одной из составляющих программы CPGS (Conventional Prompt Global Strike) министерства обороны США, предусматривающей создание технологий осуществления быстрого глобального удара неядерными средствами, которые обеспечили бы поражения приоритетных целей в течение часа. Начиная с 2006 года, Пентагон постоянно увеличивал финансирование разработки перспективного гиперзвукового оружия AHW сухопутных войск.

В ходе первого запуска в ноябре 2011 года аппарат AHW был запущен с Тихоокеанского ракетного испытательного центра (о. Кауаи, Гавайские острова) в зону атолла Кваджалейн, где расположен испытательный полигон СВ. Цель испытаний заключалась в сборе данных
по технологиям обеспечения гиперзвукового планирующего полета на большую дальность со входом в атмосферу. В полете оценивались аэродинамические характеристики, система навигации, наведения и управления, технологии системы теплозащиты.

Трехступенчатая ракета-носитель обеспечила выведение планирующего аппарата AHW на расчетную траекторию полета и его отделение от последней ступени ракеты. Аппарат выполнил полет на гиперзвуковой скорости по небаллистической планирующей траектории и менее чем за 30 мин достигнул расчетной зоны падения на атолле Кваджалейн. На всех участках полета проводился сбор телеметрической информации космическими, воздушными, наземными и морскими средствами. Полученные данные используются для моделирования и разработки.

Второй испытательный запуск был проведен на стартовом комплексе Кадьяк, расположенном на одноименном острове у берегов Аляски, в апреле 2014 года. Однако через 4 с после старта специалисты уничтожили аппарат, поскольку внешняя термическая защитная покрышка, предназначенная для регулирования температуры двигателя, создала помехи для блока управления ракеты-носителя. Следующее испытание состоялось на Тихоокеанском ракетном полигоне в конце октября 2017 года с участием уменьшенной версии аппарата, предназначенной для запуска с борта подводной лодки.

На проведение запланированных испытаний AHW в период 2017-2019 годах минобороны США запросило $86 млн в 2016 ф.г., $174 млн - в 2017 ф.г., $197,4 млн в 2018 ф.г., и $263 млн в 2019 ф.г. Наряду с планами по продолжению испытаний последним запросом предусматривается разработка и развертывания системы с применением AHW. В то же время в 2020 ф.г. программа AHW трансформируется в НИОКР ВМС США.

В 2019 ф.г. работа в рамках программы будет включать: производство и тестирование разгонного блока и фюзеляжа ГПА, которые будут использоваться в летных испытаниях; продолжение исследований для последующей разработки перспективной системы с целью анализа стоимости, поражающего действия, аэродинамических и тепловых характеристик; проведение исследований по сбалансированности решений для оценки возможных альтернатив, доступности и комплексной системы.

Между тем агентство DARPA совместно с ВВС США параллельно продолжает разработку высокоскоростного ударного оружия HSSW (high-speed strike weapon). Работа ведется в рамках двух программ - тактической планирующей системы с ускорителем TBG (tactical boost glide) и высокоскоростного оружия с воздушно-реактивным двигателем HAWC (high-speed air-breathing weapon concept). Первую из них реализуют компании Lockheed Martin и Raytheon, вторую - Boeing. Сначала планируется развернуть систему на вооружении ВВС США и в последующем адаптировать для ВМС (в версии с вертикальным стартом).

Хотя основная цель Пентагона состоит в создании гиперзвукового оружия воздушного базирования, в 2017 году агентство DARPA инициировало новую программу "Тактическое гиперзвуковое оружие" (Operational Fires) по разработке и демонстрации гиперзвуковой системы наземного базирования, включающей TBG-технологии.

Пентагон запросил на 2019 ф.г. бюджет в размере $50 млн на разработку и демонстрации гиперзвуковой системы наземного базирования, обеспечивающей разгоняемому ГПА возможность преодолевать ПВО противника и быстро и точно поражать приоритетные цели. Поставленная задача включает разработку: усовершенствованного носителя, способного доставлять различные полезные нагрузки на разную дальность; совместимых мобильных пусковых установок наземного базирования, способных к интеграции с существующей наземной инфраструктурой; системы с определенными характеристиками, необходимыми для развертывания и быстрой передислокации.

Запрос DARPA на 2019 ф.г. составляет $179,5 млн, которые должны пойти на продолжение реализации программы TBG. Цель программы TBG (и HAWC) состоит в том, чтобы увеличить скорость гиперзвукового оружия до числа М=5 и более и обеспечить его планирование к цели. Такое оружие должно быть супержаропрочным, маневрирующим, совершать полет на высотах почти 61000 м и оснащено боевой частью (БЧ) массой 113 кг и габаритами примерно аналогичными УАБ SDB. В рамках программ TBG и HAWC также разрабатываются боеприпасы и система наведения.

Ранее ВВС США и DARPA инициировали в рамках программы CPGS совместный проект под названием FALCON (Force Application and Launch from Continental United States). Он предусматривал разработку носителя, аналогичного БР, и ГПА под названием CAV (common aero vehicle), способного доставлять БЧ в любую точку мира в течение 1-2 часов. CAV - это бездвигательный маневренный ГПА с аэродинамической конструкцией "летающее врыло", который может совершать планирующий полет в атмосфере по небаллистической траектории на гиперзвуковых скоростях.

На ранних этапах создания гиперзвукового оружия, в период 2003-2011 годов, компания Lockheed Martin сотрудничала с агентством DARPA в рамках концепции HTV-2. Легкая ракета Minotaur IV (переименованная в модифицированные ракеты Minuteman и Peacekeeper) предназначалась для разгона аппаратов, которые стартовали с базы ВВС США Ванденберг в Калифорнии. В ходе первого запуска HTV-2 в 2010 году были собраны данные в области конструкции с высоким аэродинамическим качеством, высокотемпературных материалов, системы теплозащиты, автономных систем обеспечения безопасности полета и перспективных систем наведения, навигации и управления длительным гиперзвуковым полетам. Однако эта программа была закрыта, и в настоящее время работы по аналогичным направлениям проводятся в рамках программы AHW.

Министерство обороны США рассчитывает, что исследовательские программы приведут к созданию разнообразного американского гиперзвукового оружия, и планирует консолидировать все работы в этом направлении в рамках "дорожной карты", разрабатываемой для определения плана финансирования.

Как сообщил журналистам 24 апреля заместитель министра обороны США Патрик Шанахан, ему поручено разработать план, который бы с 80-процентной вероятностью оценивал объем испытаний, требуемых к проведению до 2023 года с тем, чтобы обеспечить гиперзвуковое оружие в течение следующего десятилетия. Исходя из этого плана, Пентагон будет составлять пятилетний план финансирования работ, начиная с 2020 ф.г. На сегодняшний момент одна из главных задач министерства обороны США состоит в объединении усилий, предпринимаемых в области гиперзвуковых технологий, чтобы исключить дублирование в решении разных задач.

Как отметил Шанахан, хотя существуют некие различия в физике запусков с воздуха, суши или с моря, вместе с тем оружие разного базирования имеет унифицированные блоки и системы.

Российские достижения

Россия реализует амбициозную программу разработки гиперзвукового оружия, которая пользуется решительной поддержкой правительства. Это очевидно из ежегодного послания президента РФ Владимира Путина Федеральному Собранию от 1 марта, в котором он раскрыл детали ряда новых стратегических систем, включая гиперзвуковой стратегически комплекс "Авангард", отмечают эксперты Jane’s .

Путин представил эти системы вооружений, включая "Авангард", в контексте системы ПРО США. Утверждая, что США создают систему глобальной ПРО, бесконтрольно наращивают количество противоракет, улучшают их качественные характеристики, формируют новые позиционные районы, Путин считает, что в конечном итоге это может привести к полному обесцениванию российского ядерного потенциала, в связи с чем России должна повысить ударные возможности своих стратегических сил для преодоления ПРОО.

"Авангард", вероятно, представляет собой новое название ранее известного российского проекта 4202, или гиперзвукового планирующего аппарата Ю-71, считают эксперты Jane’s. По словам президента РФ, "Авангард" - проект комплекса стратегического назначения с МБР, оснащенной ГПА, который в России называется планирующий гиперзвуковой крылатый боевой блок (ББ). ББ способен совершать полет в плотных слоях атмосферы на гиперзвуковой скорости, соответствующей числу М=20, маневрируя по курсу и высоте, преодолевая любую противоракетную оборону. Такие условия полета - плотные слои атмосферы и гиперзвуковая скорость - создают вокруг ББ оболочку из плазмы, которая обуславливает температуру на поверхности аппарата в 2000 град С.

Возможности "Авангарда" были проиллюстрированы представленным в ходе выступления Путина видеороликом, созданным с применением компьютерной графики. Как пояснил президент РФ, демонстрируемый в видеоролике аппарат не настоящий. В то же время, оценивая представленные компьютеризованные кадры, можно понять, что таким будет типовой проект системы с характеристиками "Авангарда". Учитывая историю испытаний Ю-71 становится понятно, что Россия активно продвигается в вопросе разработки гиперзвукового оружия, делает вывод Jane’s .

По своей конструкции ГПА, показанный в компьютерном видеоролике, представляет собой клиновидный планер с конструкцией плавного перехода от крыла к фюзеляжу, часто называемой волнолетом. В рамках демонстрационного видеоролика можно было увидеть отделение планирующей гиперзвуковой крылатой ББ от разгонщика перед маневрирующим подлетом к цели. Также на видеокадрах были различимы четыре поверхности управления, расположенные в хвостовой части аппарата: две - на верхней части фюзеляжа и два фюзеляжных щитка торможения.

Вполне вероятно, что запуск ББ комплекса "Авангард" будет осуществляться с помощью новой российской тяжелой МБР "Сармат", предполагают эксперты Jane’s. Однако в своем обращении к Федеральному Собранию Путин заявил, что комплекс совместим с состоящими на вооружении России системами, предположив, что первыми носителями гиперзвуковых планирующих блоков комплекса "Авангард" станут межконтинентальные баллистические ракеты советского производства УР-100Н УТТХ (РС-18А - по договору СНВ; SS-19 Stilett - по классификации НАТО). По имеющимся оценкам, дальность МБР "Сармат" в 11000 км в совокупности с дальностью Ю-71 в 9900 км позволят обеспечить максимальную дальность нанесения удара, превышающую 20000 км. Ранее деятельность России по разработке перспективного гиперзвукового оружия была сосредоточена вокруг проекта Ю-71/4202. Затем они трансформировались в другие проекты, включая создание второго опытного образца Ю-74, запуск которого был осуществлен в 2016 с российского космодрома Ясный, расположенного на территории позиционного района РВСН "Домбаровский" в Ясненском районе Оренбургской области, и поразил условную цель на испытательном полигоне Кура на Камчатке. Современная деятельность России в области гиперзвука могли начаться в 2001 году, считают эксперты Jane’s, когда прошли испытания МБР УР-100Н УТТХ, возможно, в составе с планирующим ГПА. Первые испытания объекта Ю-71 в рамках проекта 4202 прошли в 2011 году. До испытаний Ю-74 в апреле 2016 года, было проведено еще несколько тестирований Ю-71.

Китайская программа DF-ZF. По имеющимся на сегодняшний день данным, в Китае реализуется только одна программа создания ГПА, известная под названием DF-ZF. До начала испытаний в 2014 году, программа DF-ZF была в значительной степени засекреченной. Источникам в США удалось отследить испытания, названные ими Wu-14, когда они проходили на полигоне Учжай в провинции Шаньси. Хотя Пекин не раскрывает информацию о проекте, должностные лица в США и России предполагают, что на сегодняшний день прошло семь испытаний китайского Г. По оценкам экспертов, проекту не сопутствовал успех до июня 2015 г. Успехи начались, вероятно, с пятого запуска.

По имеющимся данным, экспериментальный комплекс DF-ZF сочетает характеристики ракеты, выполняющей полет по небаллистической траектории и планирующего аппарата большой дальности. Согласно китайским информационным агентствам, перед выходом на более высокий атмосферный уровень с применением реактивной системы управления (РСУ) типовой комплекс DF-ZF разгоняется почти до орбитальной скорости М=5. Маневрируя, аппарат контролирует скорость, высоту и ориентацию перед выходом на расчетную траекторию.

После седьмого испытательного пуска, состоявшегося в апреле 2016 года, в ноябре 2017 года прошли испытания комплекса DF-ZF в составе с новой китайской БР средней дальности DF-17, способной оснащаться ядерной боеголовкой. В ходе этих испытаний гиперзвуковой аппарат достиг скорости в 11265 км/ч. В последующем в качестве разгонной ступени планируется применять китайскую МБР DF-31 вместо DF-17 с тем, чтобы увеличить дальность гиперзвукового оружия, которая на настоящий момент, по некоторым данным, составляет 2000 км.

Российские эксперты полагают, что серийное производство и развертывание гиперзвукового планирующего аппарата DF-ZF на вооружении Народно-освободительной армии Китая (НОАК) может начаться в 2020 году. Однако результаты и темпы испытаний предполагают, что на это Китаю потребуется еще не менее десятилетия.

Согласно американским разведслужбам, Китай может применять гиперзвуковые системы ПРО в качестве стратегического оружия.

Как говорится в одном из докладов правительства США, Пекин, возможно, ведет также работы в области гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД), который планирует применять для нанесения быстрого удара неядерными средствами. Оружие с таким двигателем, запущенное из Южно-Китайского моря, могло бы совершать полет на гиперзвуковых скоростях в верхних слоях атмосферы на высоте примерно 2000 км и обеспечить Китаю господствующее положение в регионе с возможностью преодолевать самые высокотехнологичные системы ПРО.

Индийские разработки

Организация оборонных исследований и разработок министерства обороны Индии DRDO уже более десяти лет занимается созданием гиперзвукового оружия наземного базирования. Наибольших успехов ей удалось достичь в рамках проекта Shourya, тогда как две других программы - BrahMos II K и HSTDV (Hypersonic Technology Demonstrating Vehicle) - продвигаются с большими проблемами.

Разработка тактического гиперзвукового ракетного комплекса класса "земля-земля" Shourya началась в Индии 1990-х годах. Дальность полета ракеты этого комплекса, по некоторым данным, составляет 700 км и может быть увеличена, точностью нанесения удара - 20-30 м. Ракета Shourya может запускаться из пускового контейнера, установленного на мобильной транспортно-заряжающей ПУ 4x4, статической платформе или в шахте.

В контейнерной версии двухступенчатая ракета запускается с помощью газогенератора (ГГ), в котором соответствующая интенсивность горения топлива обеспечивает высокое давление, необходимое для выталкивания ракеты из контейнера.

Полет 1-й ступени продолжается в течение 60-90 с и для последующей работы 2-й ступени она сбрасывается с помощью небольшого пиротехнического устройства, которое выступает в роли двигателей управления по тангажу и курсу.

Газогенератор и двигатели, разработанные лабораторией высокоэнергетических материалов HEMRL (High Energy Materials Research Laboratory) и лабораторией перспективных систем ASL (Advanced Systems Laboratory) организации DRDO, разгоняют ракету до скорости М=3
Двигатели всех ступеней работают на специально разработанном в рамках программы Shourya твердом топливе, позволяющем достичь гиперзвуковых скоростей. Ракета весит 6,5 т и может нести фугасную БЧ массой почти одну тонну или ядерную боеголовку мощностью 17 кт.
Первые наземные испытания ракеты Shourya прошли в 2004 году, а последующие испытательные пуски - в ноябре 2008 года на комплексном испытательном полигоне ITR (Integrated Test Range) в Чандипуре. В ходе этих испытаний была достигнута скорость М=5 и дальность 300 км.

Испытания окончательной конфигурации ракетного комплекса Shourya шахтного базирования состоялись в сентябре 2011 года. Они стали возможны благодаря кольцевому лазерному гироскопу и акселерометру, разработанным и интегрированным "Исследовательским центром "Имарат" (Research Centre Imarat) организации DRDO. Как было заявлено, этот опытный образец имеет улучшенные характеристики, систему навигации и наведения. Благодаря установленному на 1-й ступени специально разработанному гироскопу, повышается маневренность ракеты и точность удара. В ходе испытательных запусков из шахты ракета достигла скорости М=7,5, преодолев расстояние в 700 км на малой высоте при температуре поверхности до 700 груд С.

В министерстве обороны Индии сообщили, что самые последние испытания комплекса Shourya состоялись в августе 2016 года на полигоне ITR. Полет проходил на высоте 40 км, на скорости М=7,5 и на дальность 700 км. Первые 50 м ракета совершала полет по баллистической траектории, а затем перешла на крейсерский гиперзвуковой полет, маневрируя на конечном участке, прежде чем поразить цель, сообщили в министерстве обороны.

На салоне DefExpo 2018 должностные лица сообщили Jane’s, что следующая версия ракеты будет усовершенствована в направлении увеличения дальности. Ее производство будет осваиваться компанией Bharat Dynamics Limited, BDL. Вместе с тем руководство BDL сообщило, что не получало от DRDO каких-либо указаний по данному вопросу. Это предполагает, что процесс модернизации Shourya еще продолжается, но информация организацией DRDO не разглашается.

Параллельно Индия и Россия совместно разрабатывают гиперзвуковую крылатую ракету BrahMos-2 (K) в рамках СП BrahMos Aerospace. При этом DRDO разрабатывает ГПВРД для этой ракеты. Как сообщили в BrahMos Aerospace, наземные испытания двигателя прошли успешно. Также с помощью России разрабатывается специальное топливо, позволяющее ракете развивать гиперзвуковые скорости. Никакой информации о проекте не разглашается, а на "ДефЭкспо-2018" знакомые с ситуацией источники сообщили Jane’s, что работы находятся на стадии предварительного проектирования и может потребоваться не меньше десятилетия, прежде чем появится реальная ракета BrahMos-2.

Хотя успешность линейки сверхзвуковых ракет BrahMos была доказана в рамках их развертывания на вооружении индийских ВС, в настоящее время "Индийский институт технологий" (Indian Institute of technologies), "Индийский институт естественных науки" (Indian Institute of Sciences) и "Брамос аэроспейс" проводят крупномасштабные исследования по разработке материалов, которые можно было бы применять в составе "БРАМОС-2" для противостояния высоким аэродинамическим и тепловым нагрузкам, связанным с гиперзвуковыми скоростями.
По словам генерального директора и управляющего директора СП BrahMos Aerospace Кумара Мишры, российская ракета "Циркон" и BrahMos-2 имеют унифицированные двигатели и все технологии в области силовой установки, тогда как система наведения, программное обеспечение, планер и СУО разрабатываются отдельно для каждого из изделий.

BrahMos-2 рассчитана на дальность 450 км и крейсерскую скорость М=7. Изначально дальность была зафиксирована на уровне 290 км, так как Россия является участником Режима контроля за ракетными технологиями (РКРТ). Сейчас Индия также присоединилась к РКРТ, но пытается увеличить дальность. Ожидается, что ракета будет производиться в версиях воздушного, наземного и корабельного базирования, а также в конфигурации для запуска с подводной лодки. DRDO планирует инвестировать 250 млн дол на проведение летных испытаний ракеты при скоростях М=5,56 на уровне моря.

Между тем, индийский проект HSTDV, в котором используется ГПВРД для демонстрации автономного устойчивого полета, столкнулся с трудностями проектирования. Технологиями ГПВРД занимается Лаборатория оборонных исследований и разработок DRDL (Defence Research and Development Laboratory) организации DRDO. HSTDV предназначен для полета на скорости М=6 на высоте 30 км в течение 20 с использованием ракеты-носителя. Проектирование базовой конструкции ГПА, включающей планер и пристыкованный двигатель, завершилось в 2005 г. Основную часть аэродинамических испытаний провела авиастроительная компания "Национальные аэрокосмические лаборатории" (National Aerospace Laboratories, NAL), которая входит в Государственный совет по научным и промышленным исследованиям.
В лаборатории NAL прошли испытания уменьшенной модели HSTDV, связанные с воздухозаборником и расширенными условиями аэродинамики. В АДТ было проведено несколько испытаний по переходу сверхзвуковых скоростей в гиперзвуковые посредством сочетания ударной волны и волны расширения.

Между тем лаборатория DRDL специализируется на работах в области материалов, электрических и механических сопряжений и ГПВРД. Первый базовый проект HSTDV был представлен широкой общественности на местной конференции в 2010 г, и на выставке "АэроИндия-2011" в Бангалоре. DRDO планировала построить полномасштабный опытный образец к 2016 г. Однако из-за отсутствия финансирования, выделяемого на исследования в области гиперзвука, ограниченных технологий и оборудования, проект продвигается медленными темпами.
Вместе с тем, аэродинамика системы, тепловые процессы и характеристики ГПВРД считаются исследованными в рамках этого проекта и, как ожидается, полномасштабная воздушно-реактивная двигательная установка будет обеспечивать тягу в 6 кН, что позволит осуществлять запуск спутников, а также ядерных боеголовок, баллистических ракет и ракет, выполняющих полет по небаллистическим траекториям - на большую дальность. Аппарат представляет собой восьмиугольную конструкцию массой 1 т, оснащенную стабилизаторами управления полетом в средней части фюзеляжа и отклоняемыми рулями в хвостовой части.

В Лаборатории внешней баллистики (Terminal Ballistics Research Laboratory) в Чандигаре проводятся испытания в области таких критических технологий, как камера сгорания ГПВРД и отделение панелей. DRDO рассчитывает создать гиперзвуковые АДТ для испытаний HSTDV, однако необходимое для этого оборудование имеется в очень ограниченном количестве и оно очень дорогостоящее.

С появлением современных интегрированных систем ПРО, способствующих развитию стратегии преграждения доступа и блокирования отдельной зоны (anti-access/area denial zone, A2/AD), вооруженные силы мира начали исследовать возможности гиперзвукового оружия для противодействия A2/AD и нанесения быстрых региональных или глобальных ударов. В конце 2000-х годов оборонные программы стали фокусироваться на гиперзвуковом оружии в качестве глобальной ударной системы вооружения. С тех пор военные занимаются поиском все более возрастающих средств в развитие этих технологий, и геополитическая конкуренция в этой области неуклонно растет.

В случае гиперзвукового оружия наземного базирования, особенно запускаемого вне зоны действия ПВО противника, оптимальными и менее рискованными вариантами запуска являются имеющиеся на сегодняшний день штатные пусковые установки - либо мобильные для оружия класса "земля-земля" или "земля-воздух", либо шахтные для нанесения ударов средней или межконтинентальной дальности, считают эксперты Jane’s.