РФ и КНР разработали алгоритм для изучения структуры сложных пористых сред

Они характерны для нефтегазовой отрасли, строительства и экологии
Редакция сайта ТАСС
15:16

МОСКВА, 12 января. /ТАСС/. Российские и китайские исследователи разработали алгоритм на базе ИИ, который позволяет совмещать разномасштабные изображения и максимально точным образом изучать структуру сложных пористых сред, характерных для нефтегазовой отрасли, строительства и экологии. Об этом сообщил Центр научной коммуникации МФТИ.

"Пористые среды, такие как бетон, горные породы и сплавы имеют сложную многоуровневую структуру, которую исследуют с разным разрешением. Эти материалы широко используются в строительстве и энергетике. Точное моделирование таких структур необходимо для понимания их проницаемости, физической прочности и других характеристик. Это позволит заменить виртуальными симуляциями дорогие эксперименты", - говорится в сообщении.

Для решения этой проблемы специалисты из МФТИ и их коллеги из Сычуаньского университета (Китай) разработали ИИ-алгоритм, который позволяет избавиться от одного из самых больших компромиссов, связанных с изучением структуры сложно устроенных пористых сред. Он заключается в том, что традиционные методы визуализации позволяют ученым "видеть" или мелкие детали, или общую структуру материала.

Для получения целостной модели изучаемых структур ученым необходимо объединить в единое целое научные данные и снимки разного разрешения, полученные при исследовании образцов в лаборатории разными методами на разных масштабах. Для решения этой задачи директор по науке Центра вычислительной физики МФТИ Кирилл Герке и его коллеги создали двухэтапный ИИ-алгоритм, объединяющий в себе автокодировщик и генеративно-состязательную нейросеть.

Первая часть алгоритма анализирует двумерные снимки высокого разрешения и выявляет на них поры и другие мелкие детали, которые затем генеративно-состязательная нейросеть соединяет с большими структурными особенностями из трехмерных изображений низкого разрешения. В результате этого возникает детальная трехмерная модель изучаемого материала, свойства пор в которой можно изучать при помощи методов численного моделирования.

Проведенные учеными расчеты показали, что их алгоритм точно воспроизводит свойства уже изученных материалов и примерно вдвое превосходит уже существующие разработки по точности моделирования мелкомасштабных деталей. Это открывает путь к более глубокому пониманию физических свойств пористых материалов и поведения потоков жидкостей или газов внутри них, и созданию "цифровых двойников" подобных материалов, что ускорит и удешевит их разработку, подытожили исследователи.